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Abstract

Computational methods for unsteady
transonic flows are surveyed with emphasis upon
applications to aeroelastic analysis and flutter
prediction. Computational difficulty is
discussed with respect to type of unsteady flow;
attached, mixed (attached/separated) and
separated. Significant early computations of
shock motions, aileron buzz and periodic
oscillations are discussed. The maturation of
computational methods towards the capability of
treating complete vehicles with reasonable
computational resources is noted and a survey of
recent comparisons with experimental results is
compiled, The importance of mixed attached and
separated flow modeling for aerocelastic analysis
is discussed and recent calculations of periodic
aerodynamic oscillations for an 18 percent thick
circular arc airfoil are given,

Introduction

In the past decade there has been much
activity in the development of computational
methods for the analysis of unsteady transonic
aerodynamics about airfoils and wings. Advances
have parallelled developments in steady
computational fluid dynamics (CFD) with a lag of
approximately five years! due to the additional
requirement of time-accuracy. Figure 1, taken
- from the specification document for U.S.
military aircraft?, illustrates significant
features which must be addressed in the
treatment of computational transonic unsteady
aerodynamics. On the plot of equivalent
airspeed versus Mach number, lines of constant
altitude are straight lines through the origin
with decreasing altitudes represented by steeper
slopes. The flight envelope is typically set by
the maximum limit speed and a typical flutter
boundary curve, characterized by the flutter
speed gradually dropping to a minimum in the
transonic speed range followed by a rapid upward
rise, is shown. The ability to predict this
minimum, termed the transonic flutter dip, is of
great importance in design, since the flutter
boundary must be shown by a combination of
analysis and flight test to be outside the
flight envelope by a margin of at least 16
percent in equivalent airspeed, i,e. the f]ut@er
boundary must be outside the dashed 1line
boundary in fig. 1. Subsonic linear unsteady
aerodynamic theories have been reasonably
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successful in predicting this flutter boundary
for Mach numbers up to 0.6-0.7 but linear theory
is unable to account for the effect of
aerodynamic shape and maneuvering condition upon
unsteady airloads. At higher Mach numbers
linear analysis has been used with more or less
success depending upon the severity of local
transonic effects., The occurrence of flutter
within the flight envelope of an aircraft
usually leads to structural failure and loss of
the vehicle, highlighting the necessity for
careful validation of computational methods
intended for use in this area. This is a key
difference in the utilization of steady and
unsteady computational methods which must be
clearly understood.

This  paper attempts to provide an
assessment of the current situation regarding
computational methods for transonic unsteady
aerodynamics. It is written from the
perspective of aeroelastic applications and the
prediction of aircraft flutter. Thus attention
is devoted to assessing the state-of-the-art for
predicting unsteady airloads upon oscillating
lifting surfaces., Also, there is much current
interest in airflows over rigid surfaces which
exhibit periodic unsteadiness over narrow Mach
number regions. The interaction of these two
types of flows are 1likely to be of great
interest in the near future as computational
aeroelasticity matures., We have restricted this
survey to computational methods which solve
time-accurate transonic flow equations.
Harmonic perturbation and other approximate
solution methods have been an active research
area and an assessment of their relative merits
vis a vis time-accurate solutions would be
valuable. Also not covered are unsteady three-
dimensional vortex flows since this field is
currently undergoing a rapid growth?3,

This field received an initial impetus in
the mid-1970's from three sources:
Tijdeman's pioneering experimental work on
transonic unsteady pressure measurements, Magnus
and Yoshihara's demonstration of key transonic
flow features for an airfoil with an oscillating
flap> and the introduction of an economical
transonic finite-difference solution algorithm
by Ballhaus and Goorjian®. Ballhaus’ gives a
survey of the field from this period. The AGARD
Structures and Materials Panel Subcommittee on
Aeroelasticity has selected experimental
unsteady pressure data sets and defined two- and
three-dimensional Standard Aeroelastic
Configurations®,? to provide reference
computational test cases for the development and
validation of improved computational methods.
The data sets were obtained from rigid models
undergoing pitch and control surface



oscillations and includes both conventional ind
supercritical airfoil geometries 0, 11,12
In addition to these data sets, Sandford et
al.!3 summarize a series of unsteady pressure
tests made at NASA Langley and Tijdeman'*
presents a much used data set for a fighter wing
configuration,

Computational methods have been pursued at
a number of differing levels of physical
approximation to the flow equations. Magnus and
Yoshihara®s15,1% ysed an explicit algorithm
to solve the Fuler (EE) equations. Steger and
Bailey!”  reported a  significant  early
application to the problem of aileron buzz using
an implicit approximate factorization solution
algorithm for the Navier-Stokes (NS) equations.
Chyu and his coauthors'®: 1% "have pursued
further applications of derivatives of this
code. Most of the nonlinear unsteady
computations to date have been made by solving
the potential equations, both with and without
interacted viscous effects. For example, the
alternating-direction implicit (ADI) algorithm
embodied in the LTRANZ2 code of Balihaus and
Goorjian® enabled efficient solutions of the
two-dimensional low frequency transonic small
disturbance (TSD) potential equation through the
use of large time steps. Extensions of this ADI
algorithm have been widely wused by many
researchers., A semi-implicit form of the AD{
algorithm is used in the 3-D XTRAN3S code??,?
developed for the aerocelastic analysis of
wings., Other TSD and Full Potential (FP)
equation codes are described in Refs. 22-27.
There is a growing trend, especially for steady
flows, towards use of the Euler equations rather
than the potential equations. Euler equation
codes treating 2-D oscillating airfoils are
reported in Refs. 28-32 while salmond3? and
Belk 3" show results from 3-D Euler codes.

Over this same time period, several
experimental investigations of periodic
aerodynamic flows about rigid airfoils have been
reported. McDevitt 3%,°%  documented  such
conditions for a very narrow range of Mach
number for an 18_percent thick circular arc
airfoil and Levy®’ reproduced the effect with
calculations from a NS code, Subsequently,
Mabey 38 studied these oscillations for circular
arc airfoils with thicknesses of 10-20 percent.
References 39 and 40 give details for a 14

percent circular arc airfoil. Related
information regarding the interaction of
unsteady airloads caused by transitional

boundary layers with structural oscillations is
given by Mabey et al.*!  Another class of
separation-induced periodic flow problems,
vortex shedding about rigid cylinders and
airfoils at high angle-of-attack, has been
studied using NS codes for a variety of Reynolds
numbers in Refs, 42-44,

Unsteady aerodynamics has been the theme of
four recent AGARD conferences*> ™8  whose
proceedings contain a wealth of information,
Survey papers focusing upon computational
requirements and resources are given by
Peterson and McCroskey et al.l, Summary
papers of the 1984 and_1985 AGARD conferences
are givg? by Mykytow5° and by Mabey and
Chambers” ", The latter reference makes
recommendations regarding computational and

experimental methods for unsteady flow phenomena
and draws particular attention to the need to
pay careful attention to the nature of shock

motions. The periodic oscillations about
circular arc airfoils are recommended as
benchmark computational cases for all

time-dependent transonic viscous flow theories.
Zwaan>? surveys aeroelastic problems in
transonic flow while Deiwert®3 reviews the
numerical simulation of unsteady interactive
flows.  Finally, Mabey®* gives a review of
pertinent experimental research on
time-dependent aerodynamics.

In the following sections, tne distinction
between attached and separated flow conditions
and the available experimental data sets are
discussed. A brief discussion of the hierarchy
of available flow solvers 1is given with
attention to details specific to unsteady
flows. Then, computational capability for
two-dimensional and three-dimensional unsteady
aerodynamics is illustrated, followed by a brief
review of aeroelastic applications. Finally,
computations of unsteady periodic flow about
circular arc airfoils are discussed and the
origin of the oscillations is investigated.

Transonic Flow Phenomena

It will be helpful to distinguish the main
features of steady transonic flow in order to
organize the discussion of unsteady
aerodynamics., Figure 2, from Ref. 4, indicates
various regions of transonic flow development
for the NLR 7301 airfoil, a 16-percent cambered
supercritical-type section. With increasing
Mach number and moderate angle-of-attack, the
upper surface becomes critical between M =
0.4-0.7 with the first shock forming at an
increase of agproximately 0.1 in Mach number,
Pearcy et al.>> have classified several types of
flow separation which may occur. For
conventional airfoils the typical pattern,
termed type A, involves the growth of a Tlocal
separation bubble induced by boundary Tlayer
separation at the shock foot, spreading rapidly
to the trailing edge as Mach number increases.
This condition is often accompanied by unsteady
phenomena such as buffet and aileron buzz“. The
steep aft pressure gradients of modern airfoils,
such as the NLR 7301, can lead to an alternate
pattern, termed type B, in which separation
progresses from the trailing edge towards the
shock. Figure 2 illustrates this type B
separation, with fully separated flow aft of the
shock occuring along the tine of maximum 1ift.
Note the small ‘“shock free" design condition
occuring over a small isolated range of 1ift
coefficient and Mach number just prior to the
onset of trailing edge separation. Tijdeman
notes that flow conditions in the region between
the onset of trailing edge separation and fully
separated flow are very sensitive to Reynolds
number and the location of transition from
laminar to turbulent flow.

Figure 3 shows a similar diagram, derived
from Ref. 56, of flow regions for a complete
vehicle. Flows which are predominantly attached
or separated are designated as type 1 and III
flows respectively, while mixed attached and
separated flows are designated type II. These
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flow regions will be used to distinguish the
relative difficulty of computational wrobiews.
For unsteady flows the boundaries between these
flow types are not distinct since an airfoil or
wing may exhibit more than one type of flow
during the unsteady motion. The "picket fence"
in the mixed flow region has been added to
emphasize the possibility of “nonclassical"
aeroelastic effects in this region. Classical
Tinear aeroelastic analysis methods cannot
reliably model results in this region although
they have been surprisingly durable.

Farmer et al.>’ provided early test results
documenting the effect of airfoil shape upon
flutter boundaries. Figure 4 shows their
comparison of flutter boundaries for two
structurally and geometrically similar wings of
the same planform. The supercritical wing was a
reduced stiffness model of the modified TF-8A
wing while the conventional wing had a
symmetrical section, The two wings had
leading-edge sweep angles of 44,5 degrees.
Design cruise Mach number was 0.90 for the
conventional wing and 0.99 for the supercritical
wing. The supercritical wing was shown to have
a 25 percent lower minimum flutter dynamic
pressure near Mach 1.0 where type I1 mixed flow
would be  expected. Current  transonic
computational methods are beginning to address
this important area which will be a key topic
for computational aeroelasticity in the future.
Other reports of aeroelastic model tests
relevant to this area are; single mode flutter
of a low aspect ratio wing studied by
Erickson 8, supercritical wing flutter tests
performed at the NLR®%550 and torsional buzz
of aeroelastic wings tested at the RAE Lot
should be noted that the present paper deals
only with the computational methods for
predicting the type A and B flow separations.
Separated flows involving 3-D unsteady vortex
flow structures are also of great importance in
this field but are outside the scope of this
paper.

Experimental Data Sets

In this section, the airfoil geometries and
wing planforms which have been most frequently
studied are summarized. In addition to the
AGARD standard configurations, several other
model tests have been popular for comparison
with computational results. Figures 5 and 6
show the profiles and planforms of the 2-n® and
3-D° AGARD configurations, respectively, Data
sets for all of these configurations except the
6 percent parabolic arc, DO Al and MBB-A3
airfoils are given in Refs. 10, 11, and 70.
Tables 1 and 2 tabulate selected references for
these and other configurations in which
comparisons of experimental and calculated
unsteady pressures are given, The entries are
grouped by the equation level of the physical
modeling wused for the calculations, The
references are not exhaustive but are an attempt
to indicate publication of significant
experimental /computational comparisons or new
capability.

The first three airfoils in Table 1 are
conventignal airfoils with 6, 10, and 12 percent
thickness ratios. Tijdeman™ tested the NACA

64A006 airfoil with an oscillating quarter-chord
traiting-edge control surface, Interpretations
of these tests® have provided insights into the
underlying mechanisms of unsteady transonic
flows. Tijdeman indentified three types of
shock motion, denoted type A, B, and C. In type
A shock motion, the shock wave remains distinct
during the oscillation cycle, with a periodic
variation of shock location and shock strength.
In type B shock motion, the shock wave weakens
and disappears during a portion of the cycle,
generally during the forward propagation of the
shock along the surface. For type C motion, the
shock wave on the airfoil remains distinct and
propagates forward along the airfoil chord and
off the airfoil leading-edge.

Davis and Malcolm®2 tested the NACA 64A010A
airfoil for pitching oscillations. Two cases
from this test have been widely studied: a case
with a moderate shock wave at M = 0.8 and o« = 0
degrees and a case with steady shock-induced
separation at M = 0.8 and o = 4 degrees. The
NACA 0012 airfoil, tested by Landon 0, differs
from the other entries in Table 1 in that it was
tested for larger dynamic pitching amplitudes
and for transient ramping motions making it
suitable for dynamic stall  computational
studies.  McDevitt and Okuno®® have reported
measurements of periodic shock -induced
oscillations for this airfoil.

Data sets for the 16 percent thick
supercritical NLR 7301 airfoil are given by
both Tijdeman and Davis!® and the shock-free
condition for this supercritical airfoil has
been a challenging computational case. The 8.9
percent thick MBB A-3 airfoil has been tested by
Zimmerman®*  and represents a less severe
supercritical airfoil computational case.
Other supercritical airfoils tested for
oscillatory motions or exhibiting unsteady
behavior are: a 12 percent thick airfoil tested
for pitching, heaving, and flap rotation by den
Boer and Houwink®>, the RA16SC1 airfoil tested
by ONERA®®, and the cryogenic test of a super-
critical SC(2)-0714 airfoil by Hess et al,®’
Reference 65 reported large dynamic responses of
airloads on the supercritical airfoil for both
oscillating and static motions at type II flow
conditions and introduced the concept of
"aerodynamic resonance." Similar periodic
shock-induced oscillations are reported for the
RA16SC1 airfoil,®®

Tests of rigid circular arc_airfoils have
been reported by McDevitt et al,3, McDevitt3®,
Mabey38 and Mabey et al.3° References 35 and 36
give details of tests of an 18 percent thick
airfoil for Reynolds numbers of 1 million to 17
million, covering laminar to fully developed
turbulent flows., The wind tunnel walls were
contoured to approximate the inviscid
stream-lines over an airfoil at M = 0,775,
Periodic unsteady airflows were observed over a
narrow Mach range whose extent depended upon
whether  Mach number  was increasing or
decreasing. Forincreasing Mach  numbers,
oscillations occurred for 0.76 <M < 0.78 while
for decreasing Mach number the range was wider,
0.73 < M < 0.78. The frequency of the
oscillations was 188 33 Hz (reduced freguency k
= 0.48 based upon semi-chord)., Mabey3® studied
similar periodic flows for a series of circular



arc airfoils ranging in thickness from 10 to 20
percent at Reynolds numbers of 0.4-0.6 million.
In Ref. 39, further investigations on a larger
14 percent thick biconvex wing at Reynolds
numbers of 1-7 million 1is reported, Two
necessary criteria evident from the experimental
results for the existence of the periodic
unsteady flow are given: thickness/chord ratio
greater than 12 percent and local Mach number
upstream of the terminal shock wave in the range

1,24 <M < 1,40

McDevitt3® identifies the predominant shock
motion for the 18 percent thick airfoil as type
C whereas Mabey et al,”” argue that it is type B
motion,

The smaller number of entries in Table 2
reflects the situation regarding 3-D testing in
that there are fewer experimental data sets
widely available and fewer comparisons of
experimental and calculated results have been
published. Tijdeman!" tested a model of the F-5
fighter wing dincluding external tanks and
stores. This wing has an aspect ratio of 2.98,
a taper ratio of 0.31 and a leading edge sweep
of 32 degrees. The relatively thin wing
section, a modified NACA 64A004.8, has made this
a popular computational case since it is well
within the capability of TSD codes. Transonic
and low supersonic test conditions are
available., Of the AGARD Standard Configuration
models shown in fig. 6, the NORA model is the
most extensively tested. It is a model of the
Mirage F-1 horizontal tail which has been tested
in four European wind tunnels?s

The AGARD rectangular wing and the RAE Wing

A model have symmetric airfoil
sections®»1%,12  yhereas the IKP wing and
i supercritical airfoil

LANN wing have
sections.”»?!  Additional models tested for
oscillatory pitching are the NASA Rectangular
Supercritical Wing (RSW) _model1®®:®° and the
RAE AGARD tailplane model.’® The former had a
12 percent supercritical airfoil section while
the latter had a NACA 64A010A section, the same
as one of the AGARD 2-D configurations,

Also included in Table 2 are references to
several other published comparisons with
experimental data. These cases are of interest
since the models were aeroelastic and some
comparisons of  experimental and  computed
transonic flutter boundaries (or aeroelastic
response) are given. Isogai gives comparisons
for a high aspect ratio super-critical transport
wing in Ref. 26 and for the supercritical wing
flutter model of _Farmer et al. in Ref. 71.
Bennett et al.’? give static aeroelastic
comparisons for an  aspect ratio 10.3
supercritical wing which was extensively

instrumented for unsteady pressure
measuremggts . Finally, Guruswamy and
Goorjian present calculations for a

rectangular parabolic arc flutter model.

Computational Methods

A variety of methods is available to
address transonic unsteady computations, The
choice of an appropriate method calls for

assessment of the difficulty of the aerodynamic
problem being addressed. One possible
classification of level of difficulty is
indicated in fig. 3 in which type 1 problems
involve attached flows, type 11 problems involve
mixed flows and type IIl problems involve fully
separated flows. Type I flows include one of
the  most important  aeroelastic  analysis
conditions, cruise at high dynamic pressure.
Classical linear aeroelastic analysis has been
primarily focused upon this condition. The
transition from type I to type II conditions can
be induced by manuevering flight and can occur
with little decrease in dynamic pressure. Thus,
aeroelastic response and stability of type II
flows can be quite important although they only
recently have been brought within the range of
transonic computational methods. Type III flows
occur as larger maneuvers are performed and can
involve the onset of vortex flows, buffet and
dynamic stall. It must also be recognized that
the nature of the airflow may change
significantly in going from steady to unsteady
conditions. For instance, airflows may exhibit
intermittently type 1 and type II conditions
while undergoing structural vibrations induced
by atmospheric turbulence or by flutter.

Computational methods available for
transonic unsteady aerodynamics include
potential equation (both TSD and FP), Euler
equation and Navier-Stokes equation solvers.
The thin-layer Navier -Stokes (TL-NS)
approximation is obtained by neglecting
components of the viscous terms in the
coordinate direction normal to the body
surface. Also, viscous flow capability may be
added to the potential and Euler equations by
means of interacted boundary layer models.

Issues which have been central to unsteady
CFD have been the choice of implicit versus
explicit algorithms, the stability of
alternative  solution  algorithms and  the
treatment of computational grids. Explicit
schemes are simple to «code and easily
vectorizable but are limited in allowable time
step by the stability 1limit imposed by the
signal propagation time over the smallest grid
cell, Faced with the requirement of maintaining
time-accuracy throughout the entire field for
aeroelastic computations, this easily leads to
excessive computation times, especially for
viscous flow calculations where a very fine mesh
near the surface is required to resolve the
boundary Tlayer. The alternative implicit
solution algorithms thus are favored and
attention must be given to their relative
stability and accuracy characteristics. Grid
generation for unsteady problems in which the
body boundary moves, such as for an oscillating
control surface or an aeroelastic deformation,
raises new issues over those involved in steady
flows. To maintain accuracy, the body-
conforming grid must be realigned with the body
at each time step. Schemes for accomplishing
this have been studied as well as the necessity
of moving the grid at all. When body motions
are small with perturbations mainly normal to
the surface, imposing boundary conditions on the
mean surface location may be an acceptable
approximation, Finally, the nature of unsteady
calculations means that the solution 1is not
allowed to achieve a steady-state and thus the
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dynamic response of numerical calculations on
the computational grid is more important. For
example, grid cell stretching in the near and
far field will affect the computational
impedance of the grid for unsteady calculations,

In the sections to follow, the status of
transonic unsteady aerodynamics is reviewed. It
has been helpful to regard the evolution of this
computational capability as following four broad
stages:

) Early computational demonstrations

) Maturation of computational methods

) Application to realistic configurations
} Type II mixed flow computation

A thread which may be discerned in
reviewing this field is the continued evolution
of computational methods, with applications and
evaluations by comparison with experiment, to
successively more difficult cases in order to
define the boundaries of validity of the
computational method. Thus, for instance, an
algorithm which was introduced to treat simple
type 1 attached flow cases 1is upgraded in
capability to enable treatment of more difficult
type 1 cases (closer to the type II boundary in
Fig. 3) and possibly even type III cases.

Early Computational Demonstration

Three early computations gave impetus to
transonic unsteady CFD: demonstration of type
A, B, and C shock motions, calculation of
periodic aerodynamic oscillationsabout a rigid
airfoil and calculation of the aileron buzz
boundary for the P-80 aircraft. All three of
these cases involve 2-D computations. A fourth
significant early development was the 3-0 TSD
code described by Borland et al.2Y which was the
first time-accurate code designed for the
aeroelastic analysis of swept wings.

Computation of Shock Motions

Tijdeman's" type A, B, and C shock motions
observed for the NACA 64A006 airfoil with

oscillating flap were demonstrated
computationally by Magnus and Yoshihara®,
Ballhaus and Goorjian°, and Magnus. Figure 7,

from Ref. 6, gives these three calculations from
the LTRAN2 TSD code with comparisons of Euler
code®s !5 results for type A and B, Magnus?®
gives the corresponding Euler code results for
type C shock motion. The computational

conditions for these three cases are:

Type Mach Reduced frequency Flap amplitude
A 0.875 0.234 1.0 deg.

B 0.854 0.179 1.0 deg.

C 0.822 0.248 1.5 deg.

These conditions are 0.15 - 0,28 Mach Tower than
Tijdeman's test conditions, very likely due to
wind tunnel wall interference. The Euler code
used by Magnus and Yoshihara was a Lax-Wendroff
explicit differencing solution algorithm and a
Cartesian grid with an embedded fine mesh around
the moving shocks was used. The boundary
conditions were applied at the mean airfoil
position, The LTRAN2 code incorporated the

Alternating Direction Implicit (ADI) algorithm
for the solution of the low frequency TSD
potential equation. The Euler code used 5484
grid points and required 1500 seconds per cycle
whereas the LTRAN2 code required 8 seconds (CDC
7600 computer).®  This significant reduction
brought the expense of 2-D unsteady transonic
CFD calculations within the reach of many
researchers,

Periodic Aerodynamic Oscillations

In order to provide experimental data for
validation of viscous flow CFD computer codes,
McDevitt et al.3® conducted tests on a rigid 18
percent thick circular arc airfoil, Figure 8
illustrates the parameters of the experiment
which was designed to encounter both trailing-
edge and shock-induced separations at high
Reynolds numbers within the wind tunnel
operating limits. Over a narrow range of Mach
number, 0.73 < M < 0.78, oscillatory flow
separation was observed, Fig, 937,  McDevitt3®
states that the oscillations involve
predominantly type C shock motion with small
regions of type A motion near the onset of
theperiodic oscillations, fig. 10. The reduced
frequency of the oscillations is k = 0.48 for a
= 0 degrees and varies little with angle-of-
attack.

Levy37 successfully
oscillations for  this airfoil using a
Navier-Stokes flow solver. Llevy's code was a
modification of the code of Ref. 75 and uses
MacCormack's explicit solution scheme with an
algebraic eddy viscosity model. Levy modified
the code to simulate the contoured wind tunnel
walls. Figure 11 shows steady computed Mach
contours for Mach numbers of Q.72 and 0.78,
corresponding to trailing-edge and shock-
induced separations, respectively, and unsteady
flow with oscillatory trailing-edge/shock-
induced separation for M = 0,754, The reduced
frequency of the computed oscillations is 0.40,
about 20 percent lower than the measured
frequency. Note particularly the lower surface
Mach contours of the third frame for M = 0,754,
The few 1lines indicate the collapse of the
supersonic region for this portion of the
cycle, Also note the dimpled nature of these
Mach 1lines under the airfoil surface. These
features will be discussed in more detail below.

computed such

Subsequent tests on circular arc airfoils
of thicknesses from 10 to 20 percent were
performed by Mabey?38, obtaining similar periodic
oscillations. The Mach number range of the
oscillations increases with decreasing thickness
as does the oscillation frequency, remaining in
the range of 0.4 < k < 0.55 depending on
thickness and wind tunnel wall condition. Mabey
et al.3% and Levy*’ give detailed comparisons of
Navier-Stokes calculations with experiment for
a 14 percent thick airfoil, reproducing
qualitatively the details of the oscillatory
flow.

Calculation of Aileron Buzz

Aileron buzz 1is a one-degree-of-freedom
aeroelastic instability, wusually of 1limited
amplitude, which may be encountered under
conditions of transonic flow. Steger and



Bai]ey17 studied such a case for the P-80
aircraft which had been tested in a wind
tunnel. They simulated a rigid 2-D wing section
strip including a free-floating aileron using a
thin-layer Navier-Stokes flow solver, They
implemented the Beam-Warming implicit
Approximate Factorization (AF) solution
algorithm, using an algebraic eddy viscosity
turbulence model. A novel treatment of the
computational grid was used to follow the
aileron motion with a conforming gird. A simple
shearing transformation in the coordinate normal
to the aileron was used.

Figure 12 shows the 1imit amplitude
"aileron buzz" oscillation which was calculated
for M = 0.82, Re = 20 x 106 and « = -1. The
calculation was initiated with a 4 degree
aileron offset. This and other calculations
successfully reproduced the experimental buzz
boundary. The computed reduced frequency was k
= 0.38. The shock motion observed in the
calculations was type B, and type II
intermittent flow separation 1is shown in Ref.
17. The code was capable of being run in an
inviscid mode (EE mode) and several such
calculations were made, Below M = 0.84 the
aileron exhibited damped oscillations of about
k = 0.36 whereas divergent oscillations (k =
0.39) were calculated at M = 0.84. Hence the
tendency to oscillate at a given frequency
derives from the inviscid flow equations while
the viscosity apparently plays the key role of
limiting the amplitude of oscillation.

These calculations were performed on a 76 x
42 grid and required approximately 1.5 sec of
ChC 7600 computer time per time step or 460
us. per grid point per iteration,
Non-dimensional time steps of 0.005 - 0.01 were
used (based on chord).

Swept -Wing Aeroelastic Analysis

Borland et al.2% and Borland and Rizzetta?!
describe the development of the XTRAN3S TSD code
for aeroelastic analysis of swept wings.
Reference 20 describes the extension of the

LTRAN?Z AD1 solution algorithm to
three-dimensions for the solution of the 3-D Tow
frequency TSD equation. Several cross

derivative terms required explicit treatment
yielding a semi-implicit algorithm. Results for
an oscillating swept wing are given in Ref. 20.
Computations on a 60 x 20 x 40 grid required 3
seconds of CPU time per time step on the CDC
7600 computer (62 us. per grid point per
iteration).

Reference 21 describes the extension of
this code to solve the complete TSD equation and
its application to coupled structural dynamic -
unsteady aerodynamic analysis. Samples of
flutter calculations for a rectangular wing are
given, Computations on a 60 x 20 x 40 grid
required 4 seconds of CPU time per time step on
the CDC 7600 computer. Static aeroelastic
solutions were obtained with 300.400 steps and
dynamic aeroelastic solutions in about 1000
steps with nondimensional time steps of 0.1. It
is noted, however, that this time step is case
dependent, depending on planform, Mach number,
etc. This capability is noteworthy as it is the

first ) completg wing flutter analysis
accomplished using a time-accurate transonic
computational method.

A comparison of calculations from the
XTRAN3S code with experimental data was given by
Seidel et al.”’® who performed calculations for
pitching oscillations of the NASA Rectangular
Supercritical Wing. Figure 13(a) shows steady
and unsteady pressure distributions for two span
stations at M = 0.7 and o = 2 degrees. For this
low transonic condition, the agreement with
experiment is good except near the leading edge
where grid refinement is probably needed. The
unsteady results in fig. 13(b) are in good
agreement with experiment over most of the
chord. Inboard, there is an improvement in the
prediction of the leading edge suction peak over
the linear theory RHOIV result. Outboard, there
is an underprediction of the leading edge peak
and evidence of viscous effects in the phase
angle in the aft cove region. Calculations for
this RSW model have also been reported in Refs.
25, 34, and 77.

Maturation of Computational Methods

In this section, the further development
and application of the computational methods
introduced in the last section is described.
These developments have typically been
introduced in 2-D codes. Hence, the exposition
emphasizes 2-D methods with parallel 3-D results
interspersed.

Augmentations to Potential Methods

Many researchers have participated 1in
augmenting the capability of unsteady potential
codes. These developments have extended the
range of applicability of transonic potential
codes by improved physical modeling and by
improved numerical stability or accuracy.

The low frequency LTRAN2 ADI algorithm was
limited in accuracy above k =~ 0.1 and additions
of the neglected time derivative terms are
described in Refs, 78-83. Chow and Goorjian8?
describe the addition of high-frequency terms
and special treatment of the farfield boundary
conditions to account for the physical domain of
dependence for supersonic freestream
conditions. This enabled calculation of 2-D
supersonic results and enhanced the stability of
the code. Increased stability was also added to
the LTRAN2 code by Goorjian et al.®* with the
replacement of the Murman-Cole differencing
method by the monotone differencing method of
Engquist and Osher.®> This method eliminates
the nonphysical formation of expansion shocks in
the Jleading-edge region and allowed a large
increase in allowable time step size.

The far-field boundary conditions imposed
can have special significance for unsteady
calculations since disturbances emanating from
these boundaries may return to the vicinity of
the airfoil and contaminate the solution.
Kwak8®  implemented non-reflecting  boundary
conditions in the LTRAN2 code and showed that
the computational grid could be made smaller
with reduced computer costs. Whitlow®’




implemented similar conditions for the complete
TSD potential equation. Reflections from
internal grid points can also occur if the grid
stretching is excessive. Seidel et al.’® show
results indicating that grid stretching in the
direction normal to the airfoi is most critical.

The XTRAN2L TSD code described by Whitlow®?
incorporates the features mentioned above and
typical results from this code are shown in
figs. 14 and 15 for the NACA 64A010A airfoil.
Figure 14 shows the steady pressure distribution
for the moderate shock case of Davis and Malcolm
while fig. 15 compares the unsteady 1lift
coefficient with experiment and the LTRAN2-NLR
and LTRANV (with interacted viscous effects)
results of Houwink. Agreement is good for
moderate  frequencies while there is a
characteristic overprediction of the imaginary
part for the lowest frequencies. Similar
comparisons for a number of the 2-D AGARD
configurations are given in Refs. 89-93,

Batina®* studied the effect of airfoil
shape, thickness, camber, and angle-of-attack
upon unsteady airloads using the XTRANZL code.
An interesting feature shown in Ref, 94 is
illustrated in fig., 14(a) which shows frequency
response functions of pitching moment due to a
pulsed airfoil pitching motion for three
different airfoils, Fourier transform analysis
of such motions and airloads has been shown to
be very usefyl in transonic unsteady aerodynamic
calculations 6, notwithstanding the nonlinear
nature of the flow equation. Note the "hump" in
the real part and the coincident "wave" of the
imaginary part of the pitching moment curves
near k = 0.6. Such resonance features are
familiar to dynamicists as similar to the
response of damped mechanical oscillatory
systems. Examples from Ref., 94 show that the
frequency and strength of this resonance feature
are primarily a function of Mach number with
airfoil shape and thickness being secondary
effects.

Berry et al.9% show a similar resonance
near k = 0,25 in the pitching moment due to flap
deflection for the NACA 64A006 airfoil at M =
0.85. New calculations for this airfoil are
shown in fig, 17 for M = 0,822 and 0.854. These
are the conditions shown in fig, 7 for type B
and type C shock motion., The symbols in fig. 17
give the complex valued pitching moment
coefficients for these two cases derived from
separate harmonic oscillation calculations.
Note that the type B shock motion (which is
reproduced by the XTRANZL code) was observed
near the "resonance" frequency at k = 0.2 for M
= 0.854 whereas the type C shock motion is
observed at a frequency approximately one-half
the resonance frequency at M = 0,822, This
resonance-type structure is not observed in the
pitching moment frequency response function for
M = 0.875 (type A shock motion) where a strong
shock has formed.

Nonunique Solutions of the Potential Equation

Steinhoff and Jameson®® have demonstrated
that the potential equation for transonic flow
can have nonunique solutions due to entropy
generation  within shocks violating the

isentropic assumption upon_which the theory is
based. Williaws et al. have studied this
effect for the TSD equation, Figure 18
illustrates the multiple solutions obtained for
the NACA 0012 airfoil at M = 0.85. The unsteady
results given on the right of the figure (k # 0)
demonstrate that large phase errors may occur at
low reduced frequencies as the solution jumps
between the stable equilibrium solutions at A
and C. Fuglsang and Williams®® have developed
modifications to the TSD equation to circumvent
this problem., These nonisentropic modifications
involve a modified flux term, a correction to
the pressure coefficient equation and a
correction to the wake jump condition to allow
entropy convection. These modifications correct
the multiple solutions and enable the use of the
TSD equation for a wider range of problems,
Nonisentropic cases studied by Fqg]sang are
noted in Table 1. Gibbons et al.?® extended
this method to 3-D using the XTRAN3S TSD code
and found evidence of similar wmultiple

solutions. Figure 19 shows time histories of
Tift coefficient following a pitch pulse
excitation. For aspect ratios greater than 24

the 1ift diverges to a non-zero steady state.
Gibbons  implemented the 2-D modifications
discussed above stripwise in the XTRAN3S code,
obtaining the results in fig. 20, The
unmodified code predicts a 1ift curve slope
which is twice as large as that obtained with an
Euler code whereas the modified code agrees with
the Euler code result. Gibbons also shows
results for the RAE AGARD tailplane model where
the nonisentropic modifications resulted in a
foward shift of the shock near the wingtip of
nearly 10 percent chord. Further studies of
this effect are needed to give a complete
assessment of this effect for potential codes,
Finally, Osher et al.'%® and Wwhitlow et al,!0!
have also developed entropy condition satisfying
approximations for the unsteady FP equation.

Treatment of Moving Grids

For solution of flow equations above the
TSD level, body conforming grids are generally
used. For aeroelastic applications in which the
structural boundary moves from iteration to
iteration, the issue of redefining the grid at
each step must be addressed, Generally, the
problem of grid definition is of such difficulty
that approximate methods have been sought. Chyu
and his coworkers!®, used an interpolation
scheme for defining grids at intermediate steps
between the extremes of motion for oscillating
airfoils. They used Steger's}?2 Navier-Stokes
code to study the moderate shock case!® and the
shock -induced separation case for the NACA
64A010A airfoil, shown in figs. 21, 22. Note
that the full and thin-layer Navier-Stokes
results in fig. 21 show no differences except

near the shock. This is an important
demonstration of capability for type I1I-III
flows with intermittent separation. These

calculations were obtained using 2620 steps per
cycle of oscillation and the time per step on
the CRAY X-MP computer was: 0.33 sec, full NS;
0.22 sec, TL-NS; 0.17 sec, EE, correspoinding to
25-44 ys. per grid point per time step.



If the surface motion dis small and
primarily in the direction normal to the x-axis,
a suitable engineering approach may be to apply
the boundary conditions at the mean surface
location with suitable terms added to the
boundary condition to simulate surface motion.
Sankar et al.!%® have made a preliminary
evaluation of this method for unsteady
calculations using 2-D and 3-D FP codes. For
the 2-D code, a case with an oscillating
trailing-edge flap with one degree amplitude was
studied. They find that results using the exact
boundary conditions with a moving grid and the
transpiration approach differed by no more than
10 percent for surface pressures and integrated
loads. Further studies are required before the
viability of this transpiration boundary
condition method can be assessed.

Interactive Viscous Modeling

Within the range of type I unsteady
aerodynamic problems, fig, 3, viscous effects
become more important with increasing 1lift
coefficient or Mach number. Further increases
lead to the development of type II mixed
attached and separated flow where viscous
effects must be addressed. This borderline
region between type 1 and type II flow is
important since design operating conditions
frequently occur here, Thus simplified methods
of accounting for viscous effects without
resorting to NS codes have been sought. These
interacted boundary layer methods have most
frequently coupled an inviscid potential flow
outer region solver with an integral boundary
layer equation inner region viscous flow
solver, The two solutions are coupled
iteratively through the boundary conditions to
ensure consistent coupling. In the "direct"
coupling method, the inviscid flow solution
provides the pressure coefficient at the edge of
the boundary layer, enabling a direct solution
for the boundary layer displacement thickness.
This thickness distribution is then added to the
airfoil geometry to provide the boundary
condition for the next iteration of the inviscid
solution. For separated flows, it is necessary
to invoke an ‘“inverse" boundary layer method
wherein the displacement thickness is specified
and the edge pressure coefficient calculated.
Consistency of the inner and outer solutions is
maintained by iterating the solution at each
step.

Couston et al,'0% published unsteady
interacted solutions wusing a TSD potential
code and a viscous defect formulation of the
boundary layer equations, Results for attached
flows for the NACA 64A006 airfoil are given, 1In
subsequent calculatons, LeBalleur and coworkers,
in Refs., 66 and 106-108, have pursued this
technique for a wide range of attached and
separated flow cases. Cases of airfoils with
slats and flaps and airfoils with spoilers are
treated. Also, cases of periodic oscillations
on the 18 percent biconvex airfoil®®, 0% and
the RA16SC1 supercritical airfoil®® are
described.

Similar dinteracted viscous solutions are
given by Houwink 88,110 and by Rizzettalll,
Applications of Rizzetta's method are given in

Refs. 95 and 112-115. Ruo et al.’” show 3-D
calculations using 2-D strip and 3-D integral
boundary layer methods with a FP inviscid code,
The viscous defect formulation used by LeBalleur
retains time-accuracy for the boundary layer
equations whereas Houwink and Rizzetta's methods
use a quasi-steady (i.e. time-independent)
boundary layer. A comprehensive assessment of
flow conditions requiring time-accurate viscous
effects would be a valuable addition to the
field. Tables 1 and 2 note references in which
interacted viscous modeling has been used in
comparisons with experimental data,

Solution Algorithms

Advances in  solution algorithms for
unsteady CFD have been made for all levels of
physical flow modeling. Sides 30 summarizes work
aimed at making time-accurate Euler equation
solutions more efficient using an explicit
predictor-implicit corrector algorithm,
Artificial viscosity is added only in regions of
high gradients and stable solutions for a
Courant number of 12 are shown. Results for the
NLR 7301 airfoil at 1its design "“shock-free"
condition, M = 0.721 and @« = -0.19 degrees, are
given in figures 23-25, Figure 23 compares
calculations from the Euler code and a hodograph
method with experimental data. The
computational conditions differ from the test
conditions due to wind tunnel corrections and
boundary layer effects'®. The two calculations
agree well except for a weak shock in the Euler
solution., It is noted that the Euler solutions
were very sensitive to small changes in either
Mach number or angle-of-attack about this
condition. Figure 24 shows the steady isobar
lines about this airfoil calculated by the Euler
code. Note the nearly horizontal isobar pattern
shown in the supersonic region over the top of
the airfoil. Results are presented for flap
oscillations at a reduced frequency of k = 0,068
and fig. 25 shows instantaneous isobar patterns
for wt = 0 degrees and 180 degrees. Note the
dimpled isobar pattern on the upper surface for
wt = 0 degrees, Very good agreement of computed
and measured unsteady pressures is shown in
Ref. 30 for this case. These calculations were
performed on a 188x24 grid and required 2180
steps per cycle, using 315 sec per cycle on a
CRAY 1S computer, corresponding to 32 wus. per
grid point per time step. A factor of 10
increase in speed over the explicit method was
achieved with this semi-implicit method.

Another semi-implicit solution algorithm
isdescribed by Isogai26 for the FP equation.
The USTF3 code solves the nonconservative 3-D FP
equation and also implements a quasi-steady 2-D
strip viscous boundary layer method. Several
results for the AGARD standard wings are shown
and significant aeroelastic flutter calculations
are compared to experimental flutter results
which will be discussed later.

The semi-implicit ADI solution algorithm
used in the XTRAN3S TSD code required
increasingly small time steps to maintain
stability as wing sweep and/or taper was
increased. Guruswamy and Goorjian replaced
the grid shearing transformation of the code
with a modified shearing transformation which




mapped from a rectangular physical domain onto a
rectangular computational domain. This
alleviated the stability problem, allowing time
steps of 0.01 for the F-5 wing model whereas
time steps an order of magnitude smaller had
been marginal with the original method. Figures
26 and 27 show the steady and unsteady pressures
calculated for this aspect ratio 2.98 wing. The
leading edge sweep angle is 32 degrees and 1200
steps per cycle were used. Both steady and
unsteady computations agree closely with
experimental results and are representative of
other applications of both TSD and FP codes
listed in Table 2.

Two advances in solution algorithms for the
unsteady FP equation are reviewed next. The
first was the development by Malone and
Sankar of a strongly implicit AF scheme for
the 2-D conservative potential equation using
body fitted coordinates. Upwind density biasing
is used for stability in supersonic zones.
Results from the 2-D SUNTANS code are given in
Refs, 117 and 118 for several of the AGARD 2-D
configurations. Malone et al.?" have also
developed a 3-D version of the strongly implicit
AF  algorithm and published comparisons of
unsteady pressures with data _for the F-5 wing
mode12*, the LANN wing model’7 and the NASA RSW
model””. Figures 28 and 29 show steady and
unsteady pressures at two span stations for the
F-52% at M = 0,95, The agreement with
experiment is quite good. This USIPWING code is
implemented on the VAX 11/780 computer.
Three-dimensional unsteady results are typically
obtained with 240 steps per cycle wusing
nondimensional time steps of 0.03-0.06.

The second FP algorithm development to be
noted was the development of the flux-biased AF
method by Osher, Hafez, and Whitlow, Refs. 100,
101, and 119. The method satisfies an entropy
inequality ruling out expansion shocks and
accurately tracks sonic conditions, requiring no
empirical constants to specify the amount of
artifical viscosity needed for stability.
Whitlow et al.l0! gives details of the method
implemented in a 2-D FP code and show examples
for the NACA 0012 airfoil. Shankar et al,!?°
and Shankar and Ide?® have used the flux-biased
AF technique in a Newton linearization method
with  internal iterations to reduce the
linearization and factorization errors and
efficiently treat unsteady flows with large time
steps. Reference 120 presents results for the
NACA 0012 airfoil for nondimensional time steps
of 0.1, 0.2, and 0.3 (corresponding to CFL
numbers of 35, 70, and 105). The number of
internal iterations is increased with the larger
time steps to maintain accuracy. For unsteady
calculations with two internal dterations the
2-D code required 0.09 seconds per iteration on
a CRAY X-MP computer with a 181x30 grid,
corresponding to 16 us. per grid point per time
step. In Ref. 25 an extension of this
flux-biased AF method to 3-D is described.
Sample calculations for the NASA RSW model are
given and excellent stability characteristics
are quoted. On a 100x16x20 grid, calculations
were obtained for 100 time steps per cycle
(Courant numbers greater than 100) in about 60
seconds on a CRAY X-MP computer, corresponding
to 18 us. per grid point per time step.

Batina2? has implemented a 3-D AF algorithm
for the TSD potential equation which is similar
to Shankar's! method in using a Newton
linearization in time coupled with internal
iterations. Results for the F-5 wing model at M
= 0.9 were calculated for 100, 200, 300, and 400
steps per cycle. The results for 100 steps per
cycle indicated that the time step was too large
for engineering accuracy. Comparison
calculations with the XTRAN3S ADI algorithm
required 2000 steps per cycle. An advantage of
such an efficient 3-D TSD code is that body
conforming grids are not required and codes may
be configured to treat complex geometries. Of
course, this advantage must be balanced against
the loss of some physical modeling fidelity with
the small disturbance approximation. It seems
certain that a variety of unsteady computational
methods, with a range of physical modeling
approximations, will eventually be used within
the design process.

The time-dependent Euler equations form a
hyperbolic system of equations, and much of the
recent progress in algorithm
development 121712 has  hinged uypon  the
incorporation of the signal propagation features
of the differential equation into the numerical
algorithm, There are several methods of
incorporating this information into a difference
scheme, for example flux-vector-splitting or
flux- difference-splitting, and an excellent
review of the current developments in the field
is given by Roe in Ref. 127. The advantages of
incorporating an upwind-biased discretization
into a numerical algorithm are twofold: (1) the
scheme becomes naturally dissipative so that no
adjustable constants need to be fine-tuned to a
particular application and (2) improved implicit
schemes can be devised for more efficient
solutions to both steady and time-dependent
problems, Both of these advantages offset the
disadvantage that approximately twice as many
operations per time step are required to
implement an upwind scheme as opposed to a
central difference scheme,

Most of the calculations made to date with
upwind difference schemes, especially for
airfoils/wings, have been steady-state
applications, for which comparable accuracy can
be obtained by central difference methods with
added artificial viscosity. The advantages of
upwind differencing should be more significant
for time-dependent problems, however, where the
ability to treat rapid movement of flows with
shocks s required. Roe'?’ gives several
examples of shock-propagation computations in
two-dimensions which demonstrate clearly the
advantages of a characteristic-based scheme.
Viscous effects can also be readily introduced
into upwind difference schemes developed for the
Euler equations by central differencing the
shear stress/heat transfer terms!28,129

The time-accurate computations made by
Steger and Bailey!” and Chyu et al,'®:1% ysed
a spatially-split approximate-factorization
(ADI) scheme, which 1is unconditonally stable in
two dimensions but at most conditionally stable
in three dimensions. Alternate factorizations
are possible with the incorporation of an upwind
difference discretization in one or more
coordinate directions which can lead to



unconditionally stable 3-D a1gorithm5121. A
two-factor eigenvalue.split scheme for the Euler
equations has an increased stability limit and
fewer operations than the spatially-split
scheme, although the operations are not
completely vectorizable. Belk>* computed steady
and time-dependent inviscid flows for the NASA
RSW model with such an algorithm in combination
with a blocked-grid strategy. Ying et al.!3
used upwind differences in a single coordinate
direction and constructed a two-factor
unconditionally stable algorithm for which
thin-layer viscous effects are readily
incorporated.,  Applications of the thin-layer
Navier-Stokes equations to the high-angle-of-
attack unsteady flow over a hemisphere-cylinder
are madel!30, Several of these alternate
factorizations are investigated in the context
of efficient algorithms for three-dimensional

steadx-state problems by Anderson et
a1, 131,132

The wuse of multigrid techniques to
accelerate convergence to the steady-state is
becoming widespread in the aerodynamic
community. These techniques can also be used
for time-dependent flows. For instance,
multigrid techniques could be used to
efficiently solve the large banded matrix
equations arising from implicit time
discretizations, the solution of which s

generally approximated through relaxation _and/or
factorization methods. Jesperson has
demonstrated a time-accurate multiple grid
procedure which was used to overcome the small
time step limitation of an explicit scheme.
With the growing memory of today's computers
(the Numerical Aerodynamic Simulator has 256
million words of memory) it becomes feasible to
solve the banded matrices by direct Gaussian
elimination, rather than by approximate
techniques. The structure of future implicit
algorithms for both steady and time-dependent
problems will 1likely involve a multiple grid
algorithm with direct elimination techniques
used on the coarser grid levels,

Treatment of Realistic Configurations

A1l results presented thus far have dealt
with unsteady transonic  aerodynamics for
isolated 1ifting surfaces. In order to realize
necessary improvements over existing aeroelastic
analysis methods, computational aeroelastic
analysis will be required to provide reliable
predictions for complex configurations.
Capability to treat such details as
wing-fuselage interference, and wing-pylon-store
effects upon flutter boundaries are needed. It
is encouraging that studies directed at building
the capability of treating these more realistic
configuration details are progressing.

Batina has added to the XTRAN3S code
separate capabilities for treating interfering
lifting surfaces and fuselage-wing

combinations!35,  The first study is a direct
extesion of the ADI algorithm to treat two
lifting surfaces. Figure 30'%% illustrates a
case of canard-wing interference in which
unsteady loads are induced on the wing by the
oscillating canard. This effect is obviously a
function of the separation distance between the
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surfaces and the Mach number and frequency.
Shankar and GOgbel !3® have also published a
treatment of canard/wing modeling for the
unsteady full potential equation. Steady
results are shown for a canard/wing research
model and the HIMAT vehicle but no unsteady
results are given. Batinal3° describes the
treatment of the fuselage which was implemented
in the XTRAN3S code. Boundary conditions are
applied upon a computational fuselage surface
aligned with coordinate lines and are formulated
in terms of projected areas and arclengths of
the true fuselage. Comparisons with existing
steady data are favorable. Figure 31 shows the
calculated interference effect of the RAE wing/
fuselage model for an assumed wing bending
mode. The interference effect on the integrated
generalized force, important for aeroelastic
analysis, is approximateg% 5 percent of the
total. Malone and Sankar!37 have also addressed
the treatment of wing-fuselage modeling, They
used a body fitted coordinate system with the
USIPWING code and present comparisons with
steady data from a research transport wing, the
F-14 airplane and a RAE Wing/Fuselage model.
While unsteady results are shown, there are no
experimental data for comparison.

Heavy, concentrated masses such as engines,
stores, and tanks can have a large effect upon
flutter boundaries and sometimes placement of
these components is critical to meeting design
objectives. Guruswamy et al. have augmented
the ATRAN3S code to treat a wing with a tip
store. The store is modeled within the TSD
approximation by treating the tip store as an
extension of the wing planform, Comparisons
with data from the F-5 wing model with a tip
store” " are presented.

Thus, a promising start has been made in
the treatment of realistic configurations. The
trend to be observed in these examples is that
capability for an additional component has been
added to existing codes which treat isolated
wings. Based on the recent progress in devising
steady flow solution methodology for complex
configurations, one might anticipate the
development of codes aimed "ab initio" at more
complete configurations in the near future.
Another evident requirement is for the necessary
experimental data to validate codes for such
configuration details. Such tests are gquite
expensive and require much time for planning and
execution. In the meantime, careful attention
to comparisons with available steady data is a
necessary starting point in any case.

Aeroelastic Applications

The major intended use of unsteady
aerodynamic calculations 1is for prediction of
aeroelastic response of aircraft and, more
specifically, flutter, This section will
review, very briefly, the available
publications. There have been numerous
published calculations of two and three

degree -of -freedom 2-D flutter studies which are
devoid of experimental data comparisons since
realistic 2-D flutter models are very difficult
to fabricate. On the other hand, there are only
a small number of published 3-D flutter
calculations which are compared with




experimental results, An important reason for
this is the detail and effort requred to perform
a valid flutter analysis of a flutter model,
Vibration mode shapes and masses must be
accurately calculated or measured and surface
coordinates measured. Another major factor has
been the difficulty of the unsteady aerodynamic
computation for configurations of current
interest. For instance, much interest tends to
be focused upon cases whose transonic flutter
boundaries occur coincidentally with the onset
of mixed flow. Hence, aeroelastic applications
for such cases has had to await the maturation
of computational methods discussed above,

A restricted selection of
publications of 2-D flutter
includes Isogaiso, Edwards et al. 39, Bland and
Edwards®3, and Berry et al.”®, References 80,
83, and 139 document the somewhat surprising
"locally linear" nature of transonic potential
flows., That is, about the steady mean flow
condition which is a nonlinear function of Mach
number and angle-of -attack, unsteady
perturbation airloads behave very linearly for
reasonable airfoil motions. Figure 3283
illustrates this by showing the normalized
unsteady 1ifting pressure on the NACA 64AQ10A
airfoil for oscillatory pitch amplitudes from
0.25-2.0 degrees. Away from the shock pulse
little effect of amplitude is seen while the
integrated effect of the shock pulse also varies
only slightly. Reference 139 introduced the
static twisting of the airfoil due to the steady
pitching moment into the flutter problem and
demonstrated a marked effect upon flutter
boundaries, particularly for the supercritical
MBB A-3 airfoil. Reference 95 documented the
utility of s-plane Pade' curve fits of transonic

the many
calculations

airloads {(which rely on the concepts of
linearity and superposition) for aeroelastic
analysis. Viscous effects are shown to

generally result in larger values of flutter
speed since transonic effects are alleviated by
the boundary layer.

Comparisons of calculated and experimental

flutter boundaries for wian have bee% ggven by
Guruswamy and Goorjianl“ , lsogai2 'Y, and
Myers et al.l!%l, Reference 140  gives

comparisons for a rectangular wing flutter model
using an early low frequency version of the
XTRAN3S code. Reasonable agreement of flutter
speeds 1is shown at a subcritical speed, M =
0.715, but the flutter speed is overpredicted by
75 percent at M = 0,9. [Isogai studied the
supercritical wing of Farmer et al.®’ using the
nonconserva-tive FP USTF3 code and an interacted
boundary layer model. His comparison of flutter
boundaries is shown in fig. 33. The trend of
the transonic flutter dip is very nicely
predicted although the dip occurs about 0.08 low
in Mach number, The subcritical flutter
boundary is very well matched by the calculated
flutter point at M = 0.8. The premature flutter
dip and the subsequent premature rise of the
calculated boundary is of concern since
Myers!*!, presenting XTRAN3S calculations for a
transport wing, also shows such a premature rise
in the boundary. Finally, Isogai shows
flutter comparisons for a different
super-critical transport wing which agree nicely
with the experimental flutter dip.
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Since the definition of these minimum
flutter speeds very likely involves type 11
mixed flow, it 1is not surprising that few

calculations are available. It can be
anticipated that with the recent advances in
computational algorithms and interactive viscous
modeling, such cases will be treated in the near
future.

Type II Mixed Flow Computation

As indicated above, the unsteady periodic
flows encountered over a limited range of Mach
number and triggered by oscillating trailing-
edge/shock -induced boundary layer separation are

Just  recently coming into the range of
computational methods. The weakest 1link for
this capability is the wuncertainty in the

turbulence modeling of complex separated flows,
since rapid progress continues to be made in the
development of improved algorithms and faster

computers.

It is well known that separated flows
depart strongly from equilibrium - type
behavior, so that at a minimum some account of

the non-equilibrium “upstream history" effects
should be included in the computations. Some
encouraging results along this line have been
obtained by LeBalleur'%® with an integral
boundary layer model and Johnson!“? with an
eddy-viscosity Reynolds-shear stress closure
model, Simpson recently reviewed calculation
methods for turbulent separated flows and
Coakleyl““ compared several methods for airfoil
applications.

On the other hand, Levy3” was able to
reproduce the unsteady periodic flow behavior of
the 18 percent circular-arc airfoil using an
equilibrium two-layer algebraic model, The
steady flow at Mach numbers below the range of
periodic flow, characterized by trailing-edge

separation, was predicted accurately. Levy
demonstrated that the influence of the channel
walls had a substantial impact on the

comparisons with experiment, especially at Mach
numbers away from the design point. This effect
was not considered in the earlier comparisons of
Deiwert /> with the experimental results. The
steady flow at a Mach number above the range of
periodic flow, characterized by shock-induced
separation, was not accurately predicted, as the
calculation demonstrated a normal shock pattern
(fig. 11) with trailing-edge pressure recovery,

whereas the experiment indicated an oblique
shock pattern and a constant pressure region
downstream  of  the  shock. Coakley 143

domonstrated that the discrepancy was partly
attributable to the turbulence model but more so
to the blockage introduced downstream by the
separated wake flow, which forces the downstream
static pressure to be lower than the upstream
static pressure. By modeling the tunnel walls
with boundary conditions more appropriate for an
internal flow and using a modified two-equation
turbulence model, Coakley!*>:1*7 obtained good
agreement with the steady experimental results,
as shown in fig. 34. The above discussion
illustrates some of the difficulties which can

be encountered in applying and validating
computational methods for turbulent separated
flows.



In addition to Levy's calculations, the
unsteady periodic behavior for the 18-percent
biconvex airfoil has also been computed by
Steger!%?2 and by tLeBalleurl??, Steger's
calculation was for an airfoil in free-air with

an implicit Navier-Stokes <code using the
Baldwin-Lomax algebraic model. The unsteady
flow occurred at a higher Mach number (M =

0.783) than that of Levy (M = 0.754), which can
partly be attributed to the free-air boundary
conditions. The computed reduced frequency
(0.41) was remarkably close to that of Levy
(0.40) although both are low in comparison to
experiment (0.48). LeBalleur's recent
calculations were also made in free-air with a
small disturbance potential method including an
interacted two-equation integral viscous model.
Steady shock-induced separation was computed at
M = 0.788 and unsteady periodic flow at M =
0.76. The reduced frequency (0.34) was Tower
than either of the two Navier-Stokes solutions.

Some calculations have been made during the
preparation of this paper using the implicit
upwind-biased Navier-Stokes algorithm described
in Refé 149 wusing an algebraic turbulence
model'*®,  The tunnel walls were modeled and
boundary conditions appropriate for internal
flow were used, i.e., the downstream pressure
and upstream enthalpy, entropy, and flow
direction were specified. The results indicated
unsteady flow at a higher Mach number than Levy;
steady trailing-edge separation occurred at M =
0.754 and unsteady periodic flow at M = 0,78,
although the Mach number for onset of the
unsteadiness was sensitive to whether or not the
divergence of the tunnel boundary to account for
boundary layer growth was included, Figure 35
shows Mach contours through one half-cycle of
oscillation (near maximum 1ift to minimum 1ift)
indicating the forward movement, disappearance,
and subsequent formation near the trailing edge
of the 1lower surface shock. The reduced
frequency of the type B unsteady motion was
0.406, in close agreement with the calculations
of both Levy (compare fig. 11) and Steger. The
implicit calculations were made with a time step
of 0.01 and a computational time of 18 us. per
grid point per time step on the CYBER 205

computer,
The unsteady periodic flow for the 18
percent circuiar arc is triggered by the

oscillating trailing-edge/shock-induced boundary
layer separation on the airfoil., The unsteady
motion can also occur in purely inviscid flows
because of the vorticity introduced at a curved

shock., The flow past a circular cylinder at M =
0.5 1is _ well known, for example, to be
unsteady !*%» exhibiting a  type B

oscillatory shock motion at a reduced frequency
of 0.50. Barton and Pulliam'®! have also shown
for airfoils at high-angle-of-attack that the
curved shocks near the 1leading can lead to
shock -induced vorticity and periodic
self-induced oscillatory flow. To what extent
the inviscid mechanism is playing a role in the
unsteady circular arc cases is not known, and a
parametric study in terms of thickness and Mach
number to establish the range of the inviscid
mechanism would be very informative.

The calculation of the unsteady periodic
flow boundaries for airfoils is a fruitful area
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for the development and validation of
comp%gag%onal methods. Experimental pressure
data®”,°", over a wide range of
Reynolds number is available, although
detailedboundary-layer measurements are not.

For the 18-percent biconvex experiments of
McDevitt, a substantial hysteresis effect in the
unsteady flow boundary was found. This aspect
has not been demonstrated with computationatl
methods as yet, but it would be expected, based
on the above discussion, that computational
modeling as close as possible to that of the
experimental conditions will be a critical
consideration, The most interesting behavior,
and the most challenging from the computational
viewpont, occurs in the transitional region from
laminar to turbulent flow. In the experiment of
McDevitt3>, the Mach number range for the
observed unsteady flow _diminished near a
Reynolds number of 3 x 106 (fig. 9) and in the
experiments  of  Mabey3®, it  disappeared
completely in the range of Reynolds number from
about 3 x 106 to 5 x 106, ~ Scale effects in
either experiment were not significant once
turbulent flow is fully established ahead of the
shock,

The frequency of these oscillations is of
interest in that the flow mechanism causing the
unsteadiness might be identified via the
characteristic time constants of signal
propagation within the various flow regions.
Tijdeman* noted an almost 1linear relation
between the phase 1lag of the shock motion
and the airfoil motion for type A shock motion
with a well-developed shock (for pitch
osciilations of the NLR 7301 airfoil). He
related this to the signal propagation time from
the trailing-edge to the shock. Mabeyag,
commenting on characteristic time constants for
the 14 percent circular arc airfoil periodic
oscillations, notes that this reasoning leads to
reduced frequency parameters of 1.15 to 1.8,
much higher than the observed frequencies.

Three items mentioned above germane to this
discussion are; Steger and Baﬂey's1 inviscid
EE calculations for the aileron buzz case,
LeBalleur and Gerodroux-Lavigne's!?? interacted
viscous -TSD code resultfor periodic
oscillations, and Batina's®* demonstration of
the possibility of aerodynamic resonance with an
inviscid TSD code. The occurrence of damped and
undamped oscillations observed for inviscid
flows at nearly the same frequency as the
oscillations in viscous flow*’ (k = 0.36-0.39)
implies that the flow mechanism determining the
oscillation frequency derives from the dynamics
of the inviscid flow region. Furthermore, the
results of Refs. 94 and 109 give impetus to
studying this effect with a TSD code.
Accordingly, calculations were made with the
XTRANZL code of the aerodynamic response for the
18 percent thick circular arc airfoil due to
trailing-edge 25 percent chord flap motions.
The nonisentropic modifications described in
Ref. 98 were used to obtain solutions for this
strong-shock case. Figure 36 presents the
resulting cpg frequency response function for
Mach numbers of 0.66-0.74. There is a very
marked development of an aerodynamic resonance
effect as Mach number increases. For M = (.74
the airfoil resonance frequency is k = 0.32,
very close to the computational conditions of




Ref. 109 for periodic oscillations (M = 0.76 and
k = 0.36). Steady calculated flow conditions
for this case gave a shock location at x/c =
0.73 with a preshock minimum  pressure
coefficient of C, = -1.27 (the experimental
values were x/c = 0,65 and Cp, = 1.1%8),
Although this case 1is certainly outside the
bounds of a TSD code, the occurrence of such a
strong resonance feature as shown in fig., 36 is
of interest. Experimental evidence of such
aerodynamic resonances is given by den Boer and

Houwink who tested a 12 percent thick
super-critical airfoil. For pitching
oscillations, a Tlarge resonance effect was
observed near k = 0,25 at conditions

corresponding to onset of type II mixed flow.

36 were obtained
For the tests of

The calculations of fig.
using a2 1 degree flap pulse.

Ref. 36, the inclination angle of the
shock -separated region to the airfoil surface
ranged up to 7 degrees. Thus, harmonic

oscillation calculations for this condition with
a flap oscillation amplitude of 7 degrees (not
shown) were made which show the development of
the characteristic dimpled isobar pattern seen
in the NS code results of fig. 35, sketch C,
These dimpled isobar patterns have been noted in

Levy's®” NS calculations (fig. 11), Sideés EE
calculations3° (fig. 25) and the present NS
calculations (fig. 35) and appear to be a

variant of type B and type C shock motions,
That is, during a portion of the oscillation two
regions of high suction pressure occur
simitaneously. The dynamic behavior of the
boundaries of these regions (i.e. moving shocks
and pressure waves) is an interesting topic for
further study.

Concluding Remarks

We have attempted to summarize the status
of computational methods for transonic unsteady
aerodynamics with a focus upon methods for
aeroelastic calculations and the prediction of
flutter. Three-dimensional vortex flows have
not been included in this survey as this 1is a
fast evolving topic by itself. The subject has
been differentiated with respect to the
difficulty of flow modeling and computational
requirements by distinguishing the status of the
unsteady flows as: I, attached flow; II, mixed
attached and separated flow; and III, separated
flow.

1. For type I flows, computational methods have
matured with a steady progression of improved
techniques for flow simulation. Significant
efforts have been devoted to understanding the
effects of equation level, computational grid,
boundary conditions, and viscous boundary layer

modeling. Extensive comparisons with
experimental data sets have been made with
potential, Euler and Navier-Stokes equation

solvers for two-dimensional airfoil cases and an
understanding of the range of validity of the
various methods can be made. Less extensive
comparisons are available for three-dimensional
wings and more evaluations are required before
definite conclusions can be made.
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2. Progress in solution algorithms for unsteady
aerodynamics has been significant with Tlarge
decreases 1in required computer resources due
to the larger time steps allowed by more stable
solution algorithms, Development of programs
treating more realistic configurations such as
multiple lifting surfaces and wing appendages
are anticipated in the near future. The
treatment of body conforming grids for deforming
elastic vehicles must be addressed in order to
fully utilize these emerging methods.

3. There is a need for experimental data sets

with which to validate unsteady aerodynamic
codes simulating these more complete
configurations.

4, Many more transonic flutter calculations are
needed before an assessment of the range of
validity of the computational methods can be
made, Of the few reported flutter calculations,
a tendency is noted of predicting a premature
upturn in the flutter boundary, very possibly
due to violation of flow modeling assumptions
(e.g. onset of type II unsteady flow).

5. Type Il periodic aerodynamic oscillations
about an 18 percent thick circular arc airfoil
have been calculated with an upwind differenced
Navier-Stokes code using flux splitting,
duplicating earlier calculations by Levy. More
insight into this case is provided by a
transonic small disturbance potential code using
nonisentropic modifications. Calculations of
flap oscillations for this case illustrate the
frequency dependence of the oscillations and
gives further evidence of an aerodynamic
resonance phenomena in the inviscid flow about
airfoils at transonic speeds. Interaction of

such type II flows with structural vibration
characteristics may be expected to 1lead to
"nonclassical" aeroelastic response.
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References giving comparisons of experimental and calculated

TSD FP EE
F-5 Model 115, 157, 137, 23 24, 136, 153, 102
NORA 76, 22 64, 26
LANN 100, 156 45, 40, 24, 76
RAE Wing A 64, 43, 26, 136
RSW 116, 75 40, 66, 76, 25 96, 34
RAE Tailplane | 114, 85+, 155, 98+ 75, 33
Other 118*, 113%, 71%, 73*| 64*, 65*, 26*, 70*

+ Nonisentropic corrections
® peroelastic and flutter comparisons




Table 1 References giving comparisons of experimental and calculated
two-dimensional unsteady aerodynamics

TSD FP NS
NACA 64A006 6, 103*, 88, 89, 87* 102, 116 5, 15
NACA 64A010A 80, 82, 138, 88, 89, 112%, 117, 116, 79, 119| 15, 30, 32 19, 18
87*, 93, 97+, 114*, 105*-108*

NACA 0012 88, 90*, 109*, 97+, 96+, 93 119, 100+ 29, 28, 31 152, 44, 148
43, 154

NLR 7301 89, 88, 107*, 114*, 97+ 117 16, 30, 32

MBB A-3 112*, 89, 82, 138, 114*, 63

Supercritical 154*, 109*, 65*, 66

Airfoils

Circular arc 106*, 107*, 108* 35, 37, 36, 40

Airfoils

Other 151 17, 42, 43,
148

® Interacted boundary layer model
+ Nonisentropic corrections
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Fig. 1 Graphical representation of minimum
required flutter margin, (Ref. 2).
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Fig. 3 Characteristics of attached and
separated flow for complete aircraft.
(after Bradley, Ref. 56)
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Fig. 4 Comparison of conventional wing flutter

boundary with adjusted supercritical
wing boundary.
(Farmer et al., Ref. 57)
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Fig. 5 AGARD Structures and Materials Panel
two-dimensioal standard aeroelastic
configurations.,

(Bland, Ref. 8)
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Fig. 6 AGARD Structures and Materials Panel

three-dimensional standard aeroelastic
configurations,
(Bland, Ref. 9)
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Fig. 10 Reduced frequency of periodic
oscillations on an 18 percent thick
circular arc airfoil for varying angle
of attack.

(McDevitt, Ref. 36)
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Fig. 11 Computed Mach contours for 18 percent
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(Levy, Ref, 37) Fig. 13 Comparison of measured and
calculated steady and unsteady
pressures for the NASA rectangular
supercritical wing.
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Fig. 15 Comparison of measured and calculated
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Fig. 17 Pitching moment coefficient due to flap
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Fig. 18 Anomalous behavior of potential flow
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Fig. 26 Comparison of calculated and measured
steady pressures for the F-5 wing
model: M = 0.90.

(Guruswamy and Goorjian, Ref. 116)
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Ref. 27 Comparison of calculated and measured . .
unsteady pressures for the F-5 wing Fig. 29 Comparison of calculated and measured
model: M = 0.90.

unsteady pressures for the F-5 wing
model, M = 0.95.

(Malone et al., Ref. 24)

(Guruswamy and Goorjian, Ref. 116)
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(Batina, Ref. 134)
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due to assumed wing first bending mode
for the RAE wing-fuselage at M = 0,91,
a =1° and k = 0.25.
(Batina, Ref. 135)
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experiments of McDevitt for steady
shock -induced boundary separation, M =
0.785, Re = 11 x 106.

(Coakley, Ref. 145)
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Fig. 35

Calculated periodic oscillation for 18% biconvex airfoil with
implicit thin-layer Navier-Stokes code, M = 0.78, Re = 11 x 106,
k = 0.406.
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Fig. 36 Calculated pitching moment coefficient

for 18% biconvex airfoil with non-
isentropic TSD code.
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